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Abstract

From the Higgs Field to the Schrödinger Equation, one would be hard pressed to find

a corner of modern physics that didn’t concern itself with partial differential equations

(PDEs). Engineering, meteorology, and financing, to name a few, equally depend on

our knowledge of PDEs and their solutions to build planes, forecast weather, and

predict stock behavior. Unfortunately, PDEs are difficult to solve analytically in all

but the simplest of circumstances. Luckily, there exists a variety of numerical schemes

that convert impossible calculus into myriad simple calculations that a computer can

readily perform. This paper aims to illustrate the process of constructing stable,

accurate, numerical solutions for PDEs using Finite-Difference Methods (FDM) and

Pseudospectral Techniques. I have implemented a significant portion of this research

in computer models which will be referenced and summarized in this paper.
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CONTENTS

Introduction & Motivation

Partial differential equations (PDEs) are equations that involve derivatives of con-

tinuous multi-variable functions. Making a previously single-variable function time-

dependent is a simple way to turn an ordinary differential equation (ODE) into a PDE.

PDEs describe a tremendous assortment of distinct phenomena: heat, light, sound,

mechanics, circuits, electrostatics, electrodynamics, fluid dynamics, and quantum me-

chanics, to name a few. Analytical solutions to PDEs employ traditional calculus to

come to an exact solution or a class of exact solutions. For simple problems, pencil-

and-paper calculus is sufficient; however, important problems are not always simple.

Aerospace engineering, for example, confronts prohibitively difficult problems that

demand incredibly precise solutions. Designing jet wings to optimize airflow, for in-

stance, requires the computational power of a computer. Numerical analysis is the

field that concerns itself with transforming the calculus description of a problem into

algorithms that a computer can perform. Numerical solutions are ultimately estima-

tions that we hope adequately approximate the exact analytical ones.

Solving a PDE numerically can be approached different way; this paper focuses on

finite difference methods and spectral methods. Both methods are umbrella terms

that describe subfields in numerical analysis. Chapter 1 provides a crash course in

finite difference methods, which overall are simple, well-studied, and well understood.

Chapter 2 explores the basic concepts behind a subfield of spectral methods: pseudo-

spectral methods, which, although more algorithmically complicated, have benefits

unrealized by finite differences.
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Chapter 1

Finite Difference Methods

1.1 Discretization of equations

Finite Difference Methods (FDMs) are a way of numerically approximating PDEs.

Continuous functions such as u(x, t) are referenced via discrete indexing with the

following form: unj ≡ u(j∆x, n∆t), where ∆x = L/J and ∆t = M/N . L and M are

the physical domains of space and time while J and N are the number of discrete

points sampled over theses domains. FDMs require the following initial information:

1. PDE, e.g. the 1D heat equation, ∂
∂t
u(x, t)− α ∂2

∂x2
u(x, t) = 0.

2. Space Domain, e.g. 0 ≤ uj ≤ L, where uj ≡ j ·∆x, j = 0, 1, 2, ..., J , and L =

some upper bound, e.g. 2π.

3. Time Domain, e.g. 0 ≤ un < M , where un ≡ n · ∆t, n = 0, 1, 2, ..., N , and

M = some time in the future, M can be arbitrarily large.

4. Initial Conditions (ICs), the value of u(x, t) at t = 0, i.e. u0
0,1,2,..,J , e.g. u(x, 0) =

1√
2πσ

exp(− (x−σ)2

2σ2 ).

5. Boundary Conditions (BCs), which specify the value and/or the derivative of

u(x, t) at the ends or edges of the space domain. In one spatial dimension, there
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CHAPTER 1. FINITE DIFFERENCE METHODS

Figure 1.1: ICs and BCs.

are two edge values for any time, t: un0 and unJ . Their values are predetermined

by specific functions of time; un0 = f(n) and unJ = g(n).

(a) Dirichlet BCs are the simple case where both f(n) and g(n) are constants.

(b) Neumann BCs allow boundary values to fluctuate by setting un0 and unJ

such that they obey the equation ∂u/∂x = 0.

The black, green, and red dots in figure 1.1 represent values initially known for a

given PDE. The black dots represent the initial values of function u in the domain

from 0 to L, the red dots designate the edge values of function u for all subsequent

time steps, and the green dots represent values predetermined both by ICs and BCs.

The basic strategy is to use our finite difference equation to fill in the unknown values

on the interior of the space/time grid, one row at a time, incrementing the time step,

n.
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CHAPTER 1. FINITE DIFFERENCE METHODS

1.2 Explicit Finite Difference Expressions

Finite difference equations use local derivative (slope) information to estimate the

solution of the PDE at every spatial location. The derivation is as follows,

u̇(t) = lim
h→0

u(t+ h)− u(t)

h
definition of derivative (1.1)

≈ u(t+ ∆t)− u(t)

∆t
drop limit, replace h with ∆t (1.2)

u̇n ≈ u(n∆t+ ∆t)− u(n∆t)

∆t
replace continuous t with indexed version (1.3)

≈ un+1 − un

∆t
write in fully discretized notation (1.4)

The same thing can be done (more intuitively) in the spatial domain by using the

coordinates on either side of equation 1.6 (ie uj+1 and uj−1) to estimate the slope at

uj,

u′(x) = lim
h→0

u(x+ h)− u(x− h)

2h
centered derivative (1.5)

≈ uj+1 − uj−1

2∆x
simplified in discrete notation (1.6)

To get second order derivatives and higher, we apply the first derivative estimation

to the results of previous derivative estimations.

u′(x) = lim
h→0

u(x+ h
2
)− u(x− h

2
)

h
alternate centered derivative (1.7)

≈
uj+1/2 − uj−1/2

∆x
simplified in discrete notation (1.8)

u′′j ≈
u′j+1/2 − u′j−1/2

∆x
equation 1.8 with u′j as input (1.9)

≈ uj+1 − 2uj + uj−1

(∆x)2
u′j expanded with equation 1.8 (1.10)
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CHAPTER 1. FINITE DIFFERENCE METHODS

1.3 The Finite Difference Method

The finite difference method is one strategy for solving PDEs, which involves re-

placing derivatives with finite difference expressions derived in section 1.2. Consider

the 1D advection equation, where ux represents the component of wave’s velocity in

the x direction,

∂φ

∂t
+ ux

∂φ

∂x
= 0 (1.11)

Simply replace ∂φ
∂t

with equation 1.4 and ∂φ
∂x

with equation 1.6:

φn+1
j − φnj

∆t
= ux

φnj−1 − φnj+1

2∆x
(1.12)

Solving for the φ one time step in the future yields

φn+1
j = σ(φnj−1 − φnj+1) + φnj (1.13)

where σ ≡ ux
2

( ∆t
∆x

). Figure 1.2 illustrates how coordinate information propagates

using FDM equation 1.13. Using the finite difference equation 1.13 and row φ0
n, one

can calculate each φ1
n row value. In figure 1.2 the three green φ values ( φ0

1,2,3) combine

to specify φ1
2. After every φ1

j is found, equation 1.13 is used with the φ1
n row values

to compute the next row, the φ2
n values.

1.4 FDM example in 2 Spatial Dimensions

The Higgs Field can be described by a version of the Klein-Gordon PDE,

1

c2
ψ̈ = ∇2ψ − ∂u

∂ψ
Klein-Gordon (1.14)

u(ψ) = (|ψ|2 − 1)2 potential energy of ψ (1.15)
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CHAPTER 1. FINITE DIFFERENCE METHODS

Figure 1.2: Finite difference stencil

Limiting the solution to 2 spatial dimensions, equation 1.14 can be simplified to

1

c2

∂2ψ

∂t2
=
∂2ψ

∂x2
+
∂2ψ

∂y2
− 4ψ(ψ2 − 1). (1.16)

Using finite difference estimations described in the previous section, every partial

derivative can be re-expressed in terms of known values:

ψn+1
j,k − 2ψnj,k + ψn−1

j,k

(c∆t)2
=
ψnj+1,k − 2ψnj,k + ψnj−1,k

(∆x)2
+
ψnj,k+1 − 2ψnj,k + ψnj,k−1

(∆y)2
−4ψnj,k((ψ

n
j,k)

2−1),

(1.17)

which simplifies to the following, where α ≡ ( c∆t
∆x

)2 and β ≡ ( c∆t
∆y

)2,

ψn+1
j,k = 2ψnj,k(2−α−β−2(c∆t ·ψnj,k)2)+α(ψnj+1,k+ψnj−1, k)+β(ψnj,k+1 +ψnj,k−1)−ψn−1

j,k .

(1.18)
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CHAPTER 1. FINITE DIFFERENCE METHODS

1.5 Stability

In pure mathematics there exist a number of complicated techniques used to ensure

a numerical solution is stable and accurate. In simple cases (usually 1 spatial dimen-

sion), one can compare the numerical solutions against the analytical ones; however,

in practice, it is easy to guess and check the initial conditions of a numerical solution.

The choices for ∆x and ∆t are the most important components of a stable numerical

solution. Running a simulation with unstable parameters causes the calculated solu-

tions to diverge rapidly. When possible, it is a good idea to perform basic stability

analysis, the most common measures being awareness of the Courant–Friedrichs–Lewy

(CFL) condition and Von Neumann Stability Analysis (VNSA).

1.5.1 CFL Condition

Courant, Friedrichs, and Lewy developed the CFL condition in the 1950’s for nu-

merical analysis of PDEs [4]. The CFL condition, σ, is the term that collects the

time step, space step, and velocity terms into one variable for a given finite difference

scheme. For example, σ = c∆t
∆x

for the advection equation in one spatial dimension.

For stability it is required, but not sufficient, that the CFL ≤ 1 [4]. Since the sizes of

the time and space steps have an impact on stability, the CFL condition provides a

guideline for appropriate choices for these values.

1.5.2 Von Neumann Stability Analysis (VNSA)

VNSA only works on finite difference equations describing linear PDEs and relies

on Fourier analysis to determine constraints on the CFL condition that preserve

stability. In other words, it specifies constraints for the time-step, spatial-step, and

velocity that ensure the stability of the solution. FDM formulas describe how the

values associated with a collection of spatial components are updated after one time

7



CHAPTER 1. FINITE DIFFERENCE METHODS

step. The basic idea is to convert these spatial components into Fourier space then

examine the behavior of each component after they have been updated by the finite

difference equation [2]. Starting from the discrete Fourier Transform,

φ(xj, tn) =
∑
k

ζ(k)neikj∆x, (1.19)

take a single Fourier mode [3],

φnj = ζ(k)neikj∆x, (1.20)

and use it to rewrite a finite difference equation of interest1. Rearrange the altered

difference equation to isolate ζ(k), then investigate which values of ∆x and ∆t satisfy

the condition |ζ(k)| ≤ 1. If no values for ∆x and ∆t satisfy the condition, then

the finite difference scheme is unstable. If a specific ratio of ∆x and ∆t causes the

condition to be true, the scheme is conditionally true. If for all values of ∆x and ∆t,

|ζ(k)| ≤ 1, then the scheme is unconditionally stable.

1.5.3 Stability Analysis for Wave Model in Two Spatial Di-

mensions

The following example illustrates my process for determining appropriate ∆x and

∆t for the second-order wave equation in one spatial dimension; the foundation of

which was used to simulate the same wave equation in two spatial dimensions:

φ̈− c2∂
2φ

∂x2
= 0. (1.21)

1Note that in equation 1.20, the superscript n for φnj references the nth time step but denotes a
power for ζ(k)n.
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CHAPTER 1. FINITE DIFFERENCE METHODS

To get a finite difference equation, both derivatives are replaced with a second-order

approximation, equation 1.10 (The LHS is simply the temporal version of the second

derivative in equation 1.10).

φn+1
j − 2φnj + φn−1

j

(∆t)2
= c2

(
φnj+1 − 2φnj + φnj−1

(∆x)2

)
write as FDM eqn (1.22)

Rewrite equation 1.22 with Fourier terms (1.20),

(
1

∆t

)2(
ζ(k)n−1eikj∆x − 2ζ(k)neikj∆x + ζ(k)n+1eikj∆x

)
LHS (1.23)(

c

∆x

)2(
ζ(k)neik(j−1)∆x − 2ζ(k)neikj∆x + ζ(k)neik(j+1)∆x

)
RHS (1.24)

After moving the term with ∆t to the other side, divide both sides of the equation

by ζ(k)neikj∆x and let α ≡
(
c∆t
∆x

)2
,

ζ−1 − 2 + ζ = α(e−ik∆x − 2 + eik∆x) (1.25)

ζ−1 + ζ = 2 + 2α(cos(k∆x)− 1) (1.26)

= 2− 4αsin2(
1

2
k∆x) (1.27)

= 2(1− 2αsin2(
1

2
k∆x)) (1.28)

In keeping with physics tradition, I replaced sin2(1
2
k∆x) with 0 and 1 respectively (as

0 and 1 represent the minima and maxima of the sin term for all k) and inspected

both equations.

ζ(k)−1 + ζ(k) = 2 replacing sin term with 0 (1.29)

ζ(k)−1 + ζ(k) = 2(1− 2α) replacing sin term with 1 (1.30)

9



CHAPTER 1. FINITE DIFFERENCE METHODS

Figure 1.3: Mathematica plot of absolute value of equation 1.31 demonstrating the
effect that ∆x and ∆t have on ζ(k). The ∆x < c∆t region is visibly greater than 1,
and thus unstable.

By inspection, the solution to equation 1.29 is ζ = 1. This implies that |ζ| ≤ 1 for any

choice of α, and thus replacing sin2(1
2
k∆x) with 0 indicates unconditional stability.

At this point, I have only verified that the FDM is stable when k
2
∆x ∈ Z. Using the

NSolve function in Mathematica on equation 1.30 yields,

ζ(∆x,∆t) =
−2∆t2 ± 2

√
∆t4 −∆t2∆x2 + ∆x2

∆x2
. (1.31)

Figure 1.3 shows the 3D plot of ζ with domains of ∆x and ∆t from 0 to 1. From

figure 1.3 it can be ascertained that the FDM for the second order wave equation is

conditionally stable iff

∆x ≥ c∆t (1.32)

because it is only in this portion of the graph that |ζ| ≤ 1. In this case, VNSA

strongly validates the CFL condition, although it just as easily could have put tighter

bounds on ∆x and ∆t. In the case of the heat equation in one spatial dimension, for

instance, VNSA determines that (∆x)2 ≥ 2c∆t [2].

10



Chapter 2

Pseudospectral Methods

2.1 Pseudospectral Method

Pseudospectral methods are a subset of spectral methods that use global infor-

mation to determine how a PDE evolves with time. Concretely, to determine the

derivative at a point in space, instead of using local (neighboring points’) values,

the derivative is estimated via knowledge of every value in the domain, which is

commonly (although not necessarily) done with a discrete Fourier transform (DFT)

[5]. My research and implementations of the pseudospectral method exclusively used

Fourier Polynomials1, which only applies when the modeled PDE exhibits periodicity.

This prerequisite exists because Fourier transforms, and thus DFTs, require periodic

signals. As a result, spectral methods are sound choices for modeling systems with

periodic behavior. Pure spectral methods treat time periodically as well, which, in

addition to being algorithmically more complex, is not always something that can be

assumed. The prefix pseudo in pseudo-spectral means spatial operations are handled

spectrally, while FDMs are used to update time components.

1In other words, instead of representing the solution as a sum of Legendre polynomials, for
instance, I used the exponentials associated with Fourier Transforms.
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CHAPTER 2. PSEUDOSPECTRAL METHODS

2.1.1 Implementation

The following steps outline the basic procedure for solving a PDE with the pseudo-

spectral method [6].

1. Write PDE in discrete form.

2. Convert spatial terms into Fourier space.

3. Apply operators to Fourier terms2.

4. Return Fourier terms back to real space.

5. Use FDM to time step function.

This procedure works because differentiating in real space is equivalent to multiplica-

tion by coefficients in Fourier space. Consider the heat equation in 1 spatial dimension

where the F operator performs a Fourier Transform,

u̇(x, t)− α∂
2u

∂x2
= 0 start with PDE (2.1)

∂unj
∂t
− α

∂2unj
∂x2

= 0 step 1 (2.2)

∂unj
∂t
− αF−1{ ∂

2

∂x2
F{unj }} = 0 step 2-4 (2.3)

un+1
j − unj

∆t
− αF−1{ ∂

2

∂x2
F{unj }} = 0 step 5 (2.4)

Simplify to get,

un+1
j = unj + α(∆t)F−1{ ∂

2

∂x2
F{unj }} (2.5)

Formally, the F operator applies a continuous transform; however, our equations

act on discrete values so a discrete Fourier Transform operator is needed which, for

this paper, will be represented by the letters DFT. This indicates for our calculation

that equation 2.5 should replace F with DFT. In practice we want to optimize this

2Usually, but not necessarily, a derivative.
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CHAPTER 2. PSEUDOSPECTRAL METHODS

process, so we’ll use the Fast Fourier Transform Algorithm (FFT) to compute the

DFT and the Inverse Fast Fourier Transform (IFFT) to compute DFT−1:

un+1
j = unj + α(∆t)IFFT

( ∂2

∂x2
FFT (unj )

)
(2.6)

It may seem mathematically illegitimate to perform Fourier transforms on the spa-

tial component of our finite difference equation. While the motivation is yet to be

explained fully, adding transforms to equation 2.3, for instance, is valid because

u = F−1{F{u}} (2.7)

which has the discrete analog [7],

u = DFT−1(DFT (u)) (2.8)

Since the Fourier Transform operator and Differentiation are commutative, it is true

that

∂2u

∂x2
= F−1{ ∂

2

∂x2
F{u}}, (2.9)

which is why we can replace the derivative in equation 2.2 with the expression in

equation (2.9).

2.1.2 The Discrete Fourier Transform

The most natural question at this point is how does changing u(x, t) into Fourier

space make the derivative easier to perform numerically. Consider the definition of

13



CHAPTER 2. PSEUDOSPECTRAL METHODS

the discrete Fourier transform,

ũk =
1

J

J−1∑
j=0

uje
−2πi jk

J ũ ≡ DFT(u) (2.10)

uj =
J−1∑
k=0

ũke
+2πi jk

J u ≡ DFT−1(ũ) (2.11)

where ũk holds the values of uj in Fourier space [1]. The DFT occurs before the

derivative so it does not operate on each term in the sum. The näıve approach looks

like this,

∂2

∂x2
ũk =

∂2

∂x2

(
1

J

J−1∑
j=0

uje
−2πi jk

J

)
(2.12)

= −
(2πk

J

)2

ũk (2.13)

Fourier transforms decompose functions of time into the frequencies that comprise

them. Since we are limited by the density of sampled points in our grid, high fre-

quencies cannot be accurately represented and thus introduce error. To account for

this, we will employ a frequency shifted weight described by S. Johnson [1].

∂2

∂x2
ũk =

 −(2π
J
k)2ũk k ≤ J/2

−(2π
J

(k − J))2ũk k > J/2
(2.14)

Applying the DFT−1 (2.11) on the results of equation 2.14 finally yields the spatial

derivative of uj.

∂2

∂x2
uj = DFT−1

(
∂2

∂x2
ũk

)
(2.15)

Putting all the pieces together, one can treat equation 2.5 in the same way as a

finite difference formula, which procedurally estimates a given PDE with incremental

time-steps.

14



Chapter 3

My Simulations

To put the math foundations, discussed in the previous two chapters, into practice,

I wrote two simulations using Processing1. Both programs visualize the time evolution

of a linear, second-order, wave equation in 2 spatial dimensions.

∂2φ

∂t2
= c2

(∂2φ

∂x2
+
∂2φ

∂y2

)
(3.1)

I didn’t use a more complicated PDE for a few reasons. The first reason is accessibility;

the purpose is to provide a tangible link between a person’s intuition about waves

and the mathematics behind them. Telling people they are looking at the solution to

the sine-Gordon equation2 will almost never evoke an emotional response (let alone a

positive one). On the other hand, telling them that they are looking at the simulation

of the surface of a swimming pool immediately unites the math with the observers’

own experiences. Does that look like the right behavior? Suddenly the layperson

has tools to critically examine and interact with the simulation. Furthermore, the

principles required to produce a numerical solution for equation 3.1 are the exact

same as those for analytically more challenging problems. Modeling more complicated

1https://processing.org/
2 ψtt − ψxx + sin(ψ) = 0
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CHAPTER 3. MY SIMULATIONS

equations, such as the Korteweg–de Vries equation3, I saw that my methods replicated

behavior described in the literature without any real nuance introduced beyond that

which I employed in my wave equation simulation.

3.1 Program One

Program One acts more as a proof of concept than anything else; its purpose is

to visualize the finite difference method in action while simultaneously verifying its

accuracy. On the left, two mesh surfaces, one superimposed above the other, undulate

up and down. One of these mesh surfaces is my numerical approximation and the

other is the analytical solution. On the right, a height field of warm colors bobs up

and down in rounded symmetric patterns. This field represents the error between the

numerical solution and the analytical one. More specifically, it shows the absolute

difference between the numerical and analytical solution (described below) divided by

|max amplitude − min amplitude|. This gives a reference for the error height field–

absolute error is meaningless without context about the range of expected values.

An error of plus or minus one is more impressive when the expected values span

(0, 100) than when the expected range is (0, 4). By dividing by the range, the error

is normalized to represent relative error on the range (0, 1). The reason I chose not

to use fractional error is that both the expected and experimental values sweep from

positive to negative, which means that very close to zero the error blows up. This

occurs not because the model is inaccurate near zero, but because the expected value

(denominator) periodically equals 0. I also tested using the first spatial derivative in

the denominator: |φ + ∆t · φ′|; however, this term still equals 0 periodically, which

causes the same problems I experienced before and ultimately convinced me to use

the method I did.

3The KDV equation is a non-linear soliton with the following form: ∂tφ+ ∂3xφ+ 6φ∂xφ = 0
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CHAPTER 3. MY SIMULATIONS

Figure 3.1: Screenshots from Program One.

3.1.1 Analytical Solution

Another important reason I used the 2D wave equation was because it is feasible to

implement the 2D solution analytically. I did not perform the derivation myself but

relied on the helpful lecture notes of R. Daileda [9], that describe a derivation that

relies on Fourier Analysis. The solution is complicated enough that I was restricted to

Dirichlet boundary conditions (border height held constant at 0), and used a Bessel

function for the initial conditions. The reason I couldn’t use a Gaussian for the ICs

is that it is impossible to make the ICs match Dirichlet BCs (see figure 3.2). The

Gaussian plot on the right shows how the cylindrical symmetry prevents a square

border from having a common height unlike the dark orange region of the Bessel

function on the left, whose height is exactly zero on the square.

3.1.2 Numerical Solution

The numerical solution in my model uses the following finite difference formula

with the same ICs and BCs as the exact solution,

φn+1
j,k = 2φnj,k(1− γ − λ) + γ

(
φnj−1,k + φnj+1,k

)
+ λ
(
φnj,k−1 + φnj,k+1

)
− φn−1

j,k , (3.2)

where γ ≡ (c∆t/∆x)2 and λ ≡ (c∆t/∆y)2.

17



CHAPTER 3. MY SIMULATIONS

Figure 3.2: Mathematica plots. Bessel Function (left) and Gaussian (right).

Figure 3.3: Screenshots from Program Two.

3.2 Program Two

The purpose of Program One is to visually communicate the fidelity of numerical

models to exact solutions. In the literature, comparing a numerical estimation to

a known solution is the most common method of corroborating a numerical tech-

nique. Program Two, however, is intended as an interactive wave visualizer. The

user interface includes control over the following aspects of the simulation:

1. Initial Conditions: amplitude, standard deviation, and location of a 2D Gaus-

sian function that define the initial surface perturbation (truncated at the

boundary). The amplitude and standard deviation have a lower and upper

bound for practical reasons.
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2. Behavior at the Boundary: The user can either specify that the border be fixed

at height zero (Dirichlet BCs), or choose to have the wave’s height be fluid at

the boundaries (Neumann BCs). The finite difference scheme for the first choice

is the same as equation 3.2, while the pseudo-spectral equation for the second

choice uses

un+1
j = 2unj + α(∆t)IFFT

( ∂2

∂x2
FFT (unj )

)
− un−1

j , (3.3)

where the second derivative is replaced with equation 2.14.

3. Ability to pause, change ICs as desired, and restart simulation (or continue from

paused).

Furthermore, at any point the current frame can be saved at the press of a button as

a .tiff file in the home directory of the Processing file. This feature can be set to save

every frame that can be compiled afterwards into a movie.

3.3 Extensions

Damping is one feature I believe would improve the simulation’s realistic feel. I am

not 100% confident how to achieve this effect, but I suspect (and Professor Graham

agrees) that if I simply start with the following damped wave equation,

φ̈ = c2∇2φ− µφ̇, (3.4)

the numerical solution will exhibit the expected behavior. Also, while Processing

provided satisfactory speed and convenience for this project, further implementations

would be greatly enhanced by utilizing WebGL.

19



CHAPTER 3. MY SIMULATIONS
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3.5 Source Code for Program 1

// ERROR ANALYSIS OF FINITE DIFFERENCE SCHEME FOR 2D WAVE EQN

// written in Processing: https://processing.org/

// Jake Wood

// Thesis work for Physics and Computer Science at Middlebury College

// 1/29/15 - 4/26/15

// Advisors: Noah Graham and Christopher Andrews

int screenWidth = 1000;//this changes the size of window on your screen

int screenHeight = 600;

int gridWidth = 100;//NUMBER OF GRIDS ACROSS

int gridHeight = 100;//NUMBER OF GRIDS VERTICALLY

boolean isFullScreen = false;

float amplitude = 1.0;//USER CAN CHANGE THIS VALUE FOR DIFFERENT INIT CONFIGS

float narrowness = 0.15;//USER CAN CHANGE THIS VALUE FOR DIFFERENT INIT CONFIGS

// dx <= 1 / gridWidth

float dt = 0.0035; //THIS SHOULD BE EXPERIMENTED WITH (FOR STABILITY)

float c = 1.0; //WAVE SPEED

float scaleAmp = 3000.0;

float errorAmp = 100000.0;

final float errColorLow = 0.0;//error range

float errColorHigh = 0.0001;//dynamically increases to reflect actual max value

int DETAIL = 4;//change this as desired. 1 is highest resolution

float theta = 0.3;//legend angle

float dx, dy;

float cX, cY;

float oXerror;//offset for drawing different height fields

float oYexact;

float lowCol;//color bounds

float upperCol;

float time_elapsed;//inits as zero
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boolean pause;

float[] xValues, yValues;//final

Zvalue[][] zVals;

public void setup() {

if (isFullScreen)

size(displayWidth, displayHeight, P3D);

else

size(screenWidth, screenHeight, P3D);

frameRate(60);

pause = false;

oXerror = 0.5 * width;

oYexact = 100.0;

camera(width/2.0, height, (height/2.0),

width/2.0, 0, 0,

0, 1.0, 0);

time_elapsed = 0;

dx = 1.0 / gridWidth;

dy = 1.0 / gridHeight;

cX = sq(c) * sq(dt/dx);

cY = sq(c) * sq(dt/dy);

initXYArrays();

initZvalues();

lowCol = -0.001;

upperCol = 0.00;

//noLoop();

}

public void draw() {

background(180, 180, 180);

camera(width/2.0, height, (height/2.0), width/2.0, 0, 0, 0, 1.0, 0);//sets camera position

if (!pause) {

updateClock();

updateMesh1();

updateMesh2();

}

noStroke();

drawMesh();

drawLegend();

drawMeshError();

stroke(1);

drawMeshExact();

}

//handles key presses

public void keyPressed() {

char letter = key;

switch(letter) {

case ’f’:

saveFrame();

break;

case ’p’:

pause = !pause;
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}

}

//sets x y coordinates in world view

public void initXYArrays() {

xValues = new float [gridWidth + 1];

yValues = new float [gridHeight + 1];

zVals = new Zvalue[gridWidth + 1][gridHeight + 1];

//init x values

for (int i = 0; i <= gridWidth; i++)

xValues[i] = 0.5 * width * i / gridWidth;//width is whatever is set in size()

//int y values

for (int j = 0; j <= gridHeight; j++)

yValues[j] = 0.5 * height * j / gridHeight;

}

//initial config for surface perturbation

public float bessel(float x, float y) {

return (x / gridWidth)*(y / gridWidth)*(1.0 - x / gridWidth)*(1.0 - y / gridWidth);

}

//sets initial hieghts for heightfield

public void initZvalues() {

for (int h = 0; h <= gridHeight; h ++) {

for (int w = 0; w <= gridWidth; w ++) {

//zValues[w][h] = (float)Math.random();

float waveHeight = bessel(w, h);

zVals[w][h] = new Zvalue(waveHeight, waveHeight, 0);

}

}

}

//returns exact height of wave at position (w,h) and time t

public float calcExactZ(float w, float h, float t) {

float u = 0.0;

int lim = 10;

for (int m = 1; m < lim; m+=2) {

for (int n = 1; n < lim; n+=2) {

u+=64.0/pow(PI,6)*1.0/pow(m*n,3)*sin(dx*w*PI*m)*sin(dy*h*PI*n)*cos(t*PI*sqrt(sq(m)+sq(n)));

}

}

return u;

}

//absolute error

public float calcError(float experiment, float theory) {

//df is first time derivitive at spatial location

return abs(experiment - theory)*errorAmp;

}

//updates clock for calcExactZ time input

public void updateClock() {

time_elapsed += dt + dt;//each redrawing happens after 2 time steps
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}

//updateMesh 1 and 2 trade which arrays are holding which values

//to cut down on overhead of copying arrays uneccessarily each time step

public void updateMesh1() {

//loops over interior points only

for (int h = 1; h < gridHeight; h++) {

for (int w = 1; w < gridWidth; w++) {

Zvalue cell = zVals[w][h];

cell.setTemp(2.0f*cell.getZ()-cell.getPrev()+cX*(zVals[w+1][h].getZ()-2.0f*cell.getZ()+

zVals[w-1][h].getZ())+cY*(zVals[w][h-1].getZ()-2.0f*cell.getZ()+zVals[w][h+1].getZ()));

cell.setPrev(cell.getZ());

}

}

}

public void updateMesh2() {

//loops over interior points only

for (int h = 1; h < gridHeight; h ++) {

for (int w = 1; w < gridWidth; w ++) {

//only need exact z in 2nd of two updates

Zvalue cell = zVals[w][h];

cell.setExactZ(calcExactZ(w, h, time_elapsed));

cell.setZ(2.0f*cell.getTemp() - cell.getZ() + cX*(zVals[w+1][h].getTemp() -

2.0f*cell.getTemp() + zVals[w-1][h].getTemp()) + cY*(zVals[w][h-1].getTemp() -

2.0f*cell.getTemp() + zVals[w][h+1].getTemp()));

cell.setPrev(cell.getTemp());

cell.setError(calcError(cell.getZ(), cell.getExactZ()));

}

}

}

//draws the 3 distinct legends and text labels

public void drawLegend() {

float rigthEdge = width/4;

float inc = 1.1/9;

float scale = 0.4;

textSize(height*inc*scale);

pushMatrix();

rotateX(theta);

float indexedColor = ((upperCol - lowCol) + lowCol);

pushMatrix();

rotateX(-PI/2.0f);

fill(1);

text("Wave Amplitude", 0, -height*(1.1+inc/4)*scale, 1);

text("(Absolute Error)/(Amplitude Range of PDE Wave)",

height*0.7, -height*(1.1+inc/4)*scale, 1);

popMatrix();

for (float i=0; i<1.1; i+=inc){

//legend labels

pushMatrix();
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rotateX(-PI/2.0f);

String textLabel = str(i*(upperCol - lowCol) + lowCol);

fill((255 - i*255)/2.0);

text(textLabel.substring(0, 6), rigthEdge + 2, -height*(i+inc/4)*scale, 1);

String errorLabel = str(i*errColorHigh/(upperCol - lowCol)/errorAmp);

text(errorLabel, 2*rigthEdge + rigthEdge/2, -height*(i+inc/4)*scale, 1);

popMatrix();

//purple to green

colorChooser(0.0, 1.0, i, 0);

beginShape(QUAD);

vertex(0, 0, height*i*scale);

vertex(rigthEdge/2, 0, height*i*scale);

vertex(rigthEdge/2, 0, height*(i+inc)*scale);

vertex(0, 0, height*(i+inc)*scale);

endShape();

//red to blue

colorChooser(0.0, 1.0, i, 1);

beginShape(QUAD);

vertex(rigthEdge/2, 0, height*i*scale);

vertex(rigthEdge, 0, height*i*scale);

vertex(rigthEdge, 0, height*(i+inc)*scale);

vertex(rigthEdge/2, 0, height*(i+inc)*scale);

endShape();

//red error color scale

colorChooser(0.0, 1.0, i, 2);

beginShape(QUAD);

//stroke(0, 150);

vertex(rigthEdge*2, 0, height*i*scale);

vertex(rigthEdge*2+rigthEdge/2, 0, height*i*scale);

vertex(rigthEdge*2+ rigthEdge/2, 0, height*(i+inc)*scale);

vertex(rigthEdge*2, 0, height*(i+inc)*scale);

endShape();

}

popMatrix();

}

//draws height field surface for error

public void drawMeshError() {

for (int h = 0; h < gridHeight; h++) {

for (int w = 0; w < gridWidth; w++) {

float wh = zVals[w][h].getError();

float w1h = zVals[w + 1][h].getError();

float w1h1 = zVals[w + 1][h + 1].getError();

float wh1 = zVals[w][h + 1].getError();

beginShape(QUAD);

//System.out.println(0.25*(wh + w1h + w1h1 + wh1)/errorAmp);

colorChooser(0.0, errColorHigh, (wh + w1h + w1h1 + wh1)/4.0, 2);

vertex(xValues[w]+oXerror, yValues[h], wh);

vertex(xValues[w + 1]+oXerror, yValues[h], w1h);

vertex(xValues[w + 1]+oXerror, yValues[h + 1], w1h1);

vertex(xValues[w]+oXerror, yValues[h + 1], wh1);
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endShape();

}

}

}

//draws heightfield for exact solution

public void drawMeshExact() {

for (int h = 0; h < gridHeight-DETAIL; h+=DETAIL) {

for (int w = 0; w < gridWidth-DETAIL; w+=DETAIL) {

float wh = zVals[w][h].getExactZ();

float w1h = zVals[w + DETAIL][h].getExactZ();

float w1h1 = zVals[w + DETAIL][h + DETAIL].getExactZ();

float wh1 = zVals[w][h + DETAIL].getExactZ();

beginShape(QUAD);

colorChooser(lowCol, upperCol, 0.25f * (wh + w1h + w1h1 + wh1), 0);

vertex(xValues[w], yValues[h], scaleAmp*wh - oYexact);

vertex(xValues[w + DETAIL], yValues[h], scaleAmp*w1h - oYexact);

vertex(xValues[w + DETAIL], yValues[h + DETAIL], scaleAmp*w1h1 - oYexact);

vertex(xValues[w], yValues[h + DETAIL], scaleAmp*wh1 - oYexact);

endShape();

}

}

}

//draws heightfield for FDM numerical solution

public void drawMesh() {

//updates coloring info for both exact and numerical mesh

float middleHeight = zVals[gridWidth/2][gridHeight/2].getZ();

//the following conditions dynamically update the colortable to accurately reflect range

if (middleHeight > upperCol) {

upperCol = middleHeight;

} else if (middleHeight < lowCol) {

lowCol = middleHeight;

}

float middleError = zVals[gridWidth/2][gridHeight/2].getError();

if (middleError > errColorHigh) {

errColorHigh = middleError;

}

for (int h = 0; h < gridHeight-DETAIL-1; h+=DETAIL+1) {

for (int w = 0; w < gridWidth-DETAIL-1; w+=DETAIL+1) {

float wh = zVals[w][h].getZ();

float w1h = zVals[w + DETAIL][h].getZ();

float w1h1 = zVals[w + DETAIL][h + DETAIL].getZ();

float wh1 = zVals[w][h + DETAIL].getZ();

beginShape(QUAD);

colorChooser(lowCol, upperCol, 0.25 * (wh + w1h + w1h1 + wh1), 1);

vertex(xValues[w], yValues[h], scaleAmp*wh);

vertex(xValues[w + DETAIL], yValues[h], scaleAmp*w1h);

vertex(xValues[w + DETAIL], yValues[h + DETAIL], scaleAmp*w1h1);

vertex(xValues[w], yValues[h + DETAIL], scaleAmp*wh1);

endShape();
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}

}

}

//does the appropriate color fill for the given range, value, and type

void colorChooser(float low, float high, float val, int colormode) {

int index = min(8, floor( 9 * (val - low)/(high - low)));

if (colormode == 0) {

//purple to green

switch(index) {

case 0:

fill(118, 42, 131);

break;

case 1:

fill(153, 112, 171);

break;

case 2:

fill(194, 165, 207);

break;

case 3:

fill(231, 212, 232);

break;

case 4:

fill(247, 247, 247);

break;

case 5:

fill(217, 240, 211);

break;

case 6:

fill(166, 219, 160);

break;

case 7:

fill(90, 174, 97);

break;

case 8:

fill(27, 120, 55);

break;

}

} else if (colormode == 1) {

switch(index) {

//red to blue

case 0:

fill(215, 48, 39);

break;

case 1:

fill(244, 109, 67);

break;

case 2:

fill(253, 174, 97);

break;

case 3:

fill(254, 224, 144);

break;

case 4:
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fill(255, 255, 191);

break;

case 5:

fill(224, 243, 248);

break;

case 6:

fill(171, 217, 233);

break;

case 7:

fill(116, 173, 209);

break;

case 8:

fill(69, 117, 180);

break;

}

} else {

switch(index) {

//reds

case 0:

fill(255, 255, 204);

break;

case 1:

fill(255, 237, 160);

break;

case 2:

fill(254, 217, 118);

break;

case 3:

fill(254, 178, 76);

break;

case 4:

fill(253, 141, 60);

break;

case 5:

fill(252, 78, 42);

break;

case 6:

fill(227, 26, 28);

break;

case 7:

fill(189, 0, 38);

break;

case 8:

fill(128, 0, 38);

break;

default:

println("unindexed value " +index);

}

}

}

//z value class, contains all the information we store in each quad of heightfield.

class Zvalue {
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float prevZ;

float z;

float tempZ;

float exactZ;

float error;

Zvalue(float prev, float zval, float temp) {

prevZ = prev;

z = zval;

tempZ = temp;

}

public float getZ() {

return z;

}

public void setZ(float newZ) {

z = newZ;

}

public float getError() {

return error;

}

public void setError(float newError) {

error = newError;

}

public float getExactZ() {

return exactZ;

}

public void setExactZ(float newZ) {

exactZ = newZ;

}

public float getPrev() {

return prevZ;

}

public void setPrev(float newPrev) {

prevZ = newPrev;

}

public float getTemp() {

return tempZ;

}

public void setTemp(float newTemp) {

tempZ = newTemp;

}

}
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3.6 Source Code for Program 2

// FINITE DIFFERENCE AND PSEDUO-STRECTRAL SCHEME FOR 2D WAVE EQN

// Jake Wood

// written in Processing: https://processing.org/

// Thesis work for Physics and Computer Science at Middlebury College

// 1/29/15 - 4/26/15

// Advisors: Noah Graham and Christopher Andrews

final int screenWidth = 1000;//this changes the size of window on your screen

final int screenHeight = 600;

final int gridWidth = (int)pow(2, 6);//NUMBER OF GRIDS ACROSS, must be power of 2

final int gridHeight = (int)pow(2, 6);//NUMBER OF GRIDS VERTICALLY

boolean isFullScreen = false;//fullscreen not supported for webpage

// dx <= 1 / gridWidth; //imnplicity defined as such

final float dt = 0.001; //Can be experimented to see effects on stability

final float c = 4.0; //WAVE SPEED, 4 is arbitrary

final float kSQ = -sq(2 * PI);//fourier differentiation coefficient

//initial configs for surface perturbation

float amp1 = 20.0;

float narrow1 = 0.15;

float xcenter1 = 0.5;

float ycenter1 = 0.5;

float lowCol;//bounds on amplitude, for coloring

float upperCol;

int DETAIL;//1 is highest resolution

float theta;//legend angle

float pitch;//camera angle

float dx, dy;

float cfl;

boolean pause;//is simulation paused?

boolean input;//will program accept input now?

boolean record;//is program recording? not supported for web

boolean usingFourier;//using Pseduospectral method?

float[] xValues, yValues;//unchanging (x,y) coordinates in world view

Zvalue[][] zVals;

float[][] fourierDX;

float[][] fourierDY;

public void setup() {

if (isFullScreen)
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size(displayWidth, displayHeight, P3D);

else

size(screenWidth, screenHeight, P3D);

frameRate(40);

pause = true;

input = false;

record = false;

usingFourier = false;

DETAIL = 1 + 2;//3 is good init for web

theta = 0.4;

pitch = PI*7/20;

setCam();

dx = 1.0 / gridWidth;

dy = 1.0 / gridHeight;

cfl = sq(c) * sq(dt/dx);

initXYArrays();

initZvalues();

lowCol = -0.01;//arbitrary but must be small on given

//scale and < uppercol. vise versa for upperCol

upperCol = 0.01;

}

public void reset() {

DETAIL = 3;

initZvalues();

if (pause)

input = false;

else

input = true;

lowCol = -0.01;

upperCol = 0.01;

}

public void draw() {

background(100, 100, 100);

setCam();

if (usingFourier) {

if (!pause) {

doFourierStep();

}

} else {

if (!pause) {

updateMesh1();

updateMesh2();

}

}

drawLegend();

drawMesh();

if (!pause && record)//records every frame, not supported on web

saveFrame();

}

//handles key presses
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public void keyPressed() {

char letter = key;

userInput(letter);

switch(letter) {

case ’+’:

saveFrame();

println("saving frame");

break;

case ’z’:

pitch = min(PI*9.9/20.0, pitch + PI/20.0);

break;

case ’x’:

pitch = max(PI/10, pitch - PI/20.0);

break;

case ’/’:

reset();

break;

case ’q’:

theta += 0.1;

break;

case ’w’:

theta -= 0.1;

break;

case ’.’:

DETAIL = min(12, DETAIL+1);

break;

case ’0’:

DETAIL = max(1, DETAIL-1);

break;

case ’5’:

input = true;

pause = !pause;

break;

case ’-’:

record =! record;

break;

}

setCam();

}

//sets the camera view

void setCam() {

camera(width/2.0, 2*height * sin(pitch), 2*height * cos(pitch),

width/2.0, height/2.0, 0, 0, 1.0, 0);

}

//handles key presses after a reset screen

public void userInput(char k) {

if (!input) {

switch(k) {

case ’4’:

xcenter1 = max(0, xcenter1-1.0/20.0);

initZvalues();

break;
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case ’6’:

xcenter1 = min(1, xcenter1+1.0/20.0);

initZvalues();

break;

case ’2’:

ycenter1 = min(1, ycenter1+1.0/20.0);

initZvalues();

break;

case ’8’:

ycenter1 = max(0, ycenter1-1.0/20.0);

initZvalues();

break;

case ’7’:

amp1 = max(-40.0, amp1 - 1);

initZvalues();

break;

case ’9’:

amp1 = min(40.0, amp1 + 1);

initZvalues();

break;

case ’1’:

narrow1 = max(0.05, narrow1 - 0.025);

initZvalues();

break;

case ’3’:

narrow1 = min(0.5, narrow1 + 0.025);

initZvalues();

break;

case ’*’:

usingFourier =! usingFourier;

reset();

break;

}

}

}

//initializes (X,Y) array coordinates

public void initXYArrays() {

xValues = new float [gridWidth];

yValues = new float [gridHeight];

zVals = new Zvalue[gridWidth][gridHeight];

fourierDX = new float[gridWidth][gridHeight];

fourierDY = new float[gridWidth][gridHeight];

//init x and y values

for (int i = 0; i < gridWidth; i++)

xValues[i] = width * i / gridWidth;//width is whatever is set in size()

for (int j = 0; j < gridHeight; j++)

yValues[j] = height * j / gridHeight;

}

//init surface purturbation

public float multiGaussian(float x, float y) {

return amp1 * exp(-1.0f * ( sq( x / gridWidth - xcenter1) +

sq( y / gridHeight - ycenter1)) / sq(narrow1));
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}

//initilizes height field values --> 2d gaussian

public void initZvalues() {

for (int h = 0; h < gridHeight; h ++) {

for (int w = 0; w < gridWidth; w ++) {

float waveHeight = multiGaussian(w, h);

zVals[w][h] = new Zvalue(waveHeight, waveHeight, 0);

}

}

}

//does the appropriate color fill for the given range, value, and type

void colorChooser(float low, float high, float val) {

int index = min(8, floor( 9 * (val - low)/(high - low)));

switch(index) {

//red to blue

case 0:

fill(215, 48, 39);

break;

case 1:

fill(244, 109, 67);

break;

case 2:

fill(253, 174, 97);

break;

case 3:

fill(254, 224, 144);

break;

case 4:

fill(255, 255, 191);

break;

case 5:

fill(224, 243, 248);

break;

case 6:

fill(171, 217, 233);

break;

case 7:

fill(116, 173, 209);

break;

case 8:

fill(69, 117, 180);

break;

}

}

//draws the colorscale and labels

public void drawLegend() {

float inc = 0.1f;

float scale = 0.6f;

float rigthEdge = width/8;

textSize(height*inc*scale);

pushMatrix();

33



CHAPTER 3. MY SIMULATIONS

rotateX(theta);

for (float i=0; i<1; i+=inc) {

colorChooser(0, 1, i);

pushMatrix();

rotateX(-PI/2.0f);

text(str(i*(upperCol - lowCol) + lowCol), rigthEdge + 2, -height*(i+inc/4)*scale, 1);

popMatrix();

beginShape(QUAD);

vertex(0, 0, height*i*scale);

vertex(rigthEdge, 0, height*i*scale);

vertex(rigthEdge, 0, height*(i+inc)*scale);

vertex(0, 0, height*(i+inc)*scale);

endShape();

}

popMatrix();

}

//returns second spatial x derivitive at location (fourier method)

public float getFdx(int w, int h) {

return fourierDX[w][h];

}

//returns second spatial y derivitive at location (fourier method)

public float getFdy(int w, int h) {

return fourierDY[h][w];

}

//updateMesh 1 and 2 trade which arrays are holding which

//values to cut down on overhead of copying arrays uneccessarily each time step

public void updateMesh1() {

//loops over interior points only

for (int h = 1; h < gridHeight - 1; h++) {

for (int w = 1; w < gridWidth - 1; w++) {

Zvalue cell = zVals[w][h];

cell.setTemp(2.0f*cell.getZ() - cell.getPrev() + cfl*(zVals[w+1][h].getZ() -

2.0f*cell.getZ() + zVals[w-1][h].getZ()) + cfl*(zVals[w][h-1].getZ() -

2.0f*cell.getZ() + zVals[w][h+1].getZ()));

cell.setPrev(cell.getZ());

}

}

}

public void updateMesh2() {

//loops over interior points only

for (int h = 1; h < gridHeight - 1; h ++) {

for (int w = 1; w < gridWidth - 1; w ++) {

//only need exact z in 2nd of two updates

Zvalue cell = zVals[w][h];

cell.setZ(2.0f*cell.getTemp() - cell.getZ() + cfl*(zVals[w+1][h].getTemp() -

2.0f*cell.getTemp() + zVals[w-1][h].getTemp()) + cfl*(zVals[w][h-1].getTemp() -

2.0f*cell.getTemp() + zVals[w][h+1].getTemp()));

cell.setPrev(cell.getTemp());

}
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}

}

//draws each rectangle on the surface of the height field

public void drawMesh() {

float middleHeight = zVals[gridWidth/2][gridHeight/2].getZ();

//the following conditions dynamically update the bounds

//of color so the legend color syncs with arbitrary height field

if (middleHeight > upperCol) {

upperCol = middleHeight;

} else if (middleHeight < lowCol) {

lowCol = middleHeight;

}

for (int h = 0; h < gridHeight-DETAIL; h+=DETAIL) {

//removed +1 from conditions for fourier mesh draw

for (int w = 0; w < gridWidth-DETAIL; w+=DETAIL) {

float wh = zVals[w][h].getZ();

float w1h = zVals[w + DETAIL][h].getZ();

float w1h1 = zVals[w + DETAIL][h + DETAIL].getZ();

float wh1 = zVals[w][h + DETAIL].getZ();

//draws the vertical meshing

if (h%4 == 0) {

stroke(1);

line(xValues[w], yValues[h], amp1*wh, xValues[w + DETAIL], yValues[h], amp1*w1h);

noStroke();

}

//draws the horizontal

if (w%4 == 0) {

stroke(1);

line(xValues[w + DETAIL], yValues[h], amp1*w1h, xValues[w + DETAIL],

yValues[h + DETAIL], amp1*w1h1);

noStroke();

}

beginShape(QUAD);

colorChooser(lowCol, upperCol, (0.25 * (wh + w1h + w1h1 + wh1)));

vertex(xValues[w], yValues[h], amp1*wh);

vertex(xValues[w + DETAIL], yValues[h], amp1*w1h);

vertex(xValues[w + DETAIL], yValues[h + DETAIL], amp1*w1h1);

vertex(xValues[w], yValues[h + DETAIL], amp1*wh1);

endShape();

}

}

}

//copies heightfield in row order and column order for fourier step

public void updateFourierLists() {

for (int h = 0; h < gridHeight; h ++) {

for (int w = 0; w < gridWidth; w ++) {

float fieldHeight = zVals[w][h].getZ();

fourierDX[w][h] = fieldHeight;

fourierDY[h][w] = fieldHeight;

}

}

}
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//rows (x dir) fourier transformed and differentiated

public void fourierUpdateDX() {

for (int w = 0; w < gridWidth; w ++) {

realft(fourierDX[w], 1);//transform into fourier space

for (int h = 0; h <= gridHeight/2; h ++) {

fourierDX[w][h] = fourierDX[w][h] * kSQ * sq(h);

}

for (int h = gridHeight/2 + 1; h < gridHeight; h ++) {

fourierDX[w][h] = fourierDX[w][h] * kSQ * sq(h - gridHeight);

}

realft(fourierDX[w], -1);//transform back into real space

}

}

//columns (y dir) get fourier transformed and differentiated

public void fourierUpdateDY() {

for (int h = 0; h < gridHeight; h ++) {

realft(fourierDY[h], 1);//transform into fourier space

for (int w = 0; w <= gridWidth/2; w ++) {

fourierDY[h][w] = fourierDY[h][w] * kSQ * sq(w);

}

for (int w = gridWidth/2 + 1; w < gridWidth; w ++) {

fourierDY[h][w] = fourierDY[h][w] * kSQ * sq(w - gridWidth);

}

realft(fourierDY[h], -1);//transform back into real space

}

}

//performs FDM with differentiated, fourier transformed, spatial components

public void fourierTimeStep() {

float cft = sq(dt);

for (int h = 0; h < gridHeight; h ++) {

for (int w = 0; w < gridWidth; w ++) {

Zvalue cell = zVals[w][h];

cell.tempAssignTimeStep(cft * (getFdx(w, h) + getFdy(w, h)));//forward difference update

cell.setZtoPrev();

cell.setZasTemp();

}

}

}

//grouped fourier steps

public void doFourierStep() {

updateFourierLists();

fourierUpdateDX();

fourierUpdateDY();

fourierTimeStep();

}

//class holds all the important infomation held in each array cell

class Zvalue {

float prevZ;

float z;
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float tempZ;

Zvalue(float prev, float zval, float temp) {

prevZ = prev;

z = zval;

tempZ = temp;

}

public float getZ() {

return z;

}

public void setZ(float newZ) {

z = newZ;

}

public float getPrev() {

return prevZ;

}

public void setPrev(float newPrev) {

prevZ = newPrev;

}

public float getTemp() {

return tempZ;

}

public void setTemp(float newTemp) {

tempZ = newTemp;

}

public void setZtoPrev() {

prevZ = z;

}

public void setZasTemp() {

z = tempZ;

}

public void tempAssignTimeStep(float cdx2) {

tempZ = 2.0f * z - prevZ + cdx2;//forward difference update

}

}

/*

* I DID NOT WRITE the below code.

* The following implements a naively optimized real FFT

* The original source code can be found at:

* https://code.google.com/p/scalalab/wiki/JavaFFTvsNative

*/

public final static void swap(float x[], int a, int b) {

float t = x[a];

x[a] = x[b];
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x[b] = t;

}

public static void four1(final float[] data, final int n, final int isign) {

int nn, mmax, m, j, istep, i;

float wtemp, wr, wpr, wpi, wi, theta, tempr, tempi;

if (n<2 || (n&(n-1))!= 0) throw new IllegalArgumentException("n must be power of 2 in four1");

nn = n << 1;

j = 1;

for (i=1; i<nn; i+=2) {

if (j > i) {

swap(data, j-1, i-1);

swap(data, j, i);

}

m=n;

while (m >= 2 && j > m) {

j -= m;

m >>= 1;

}

j += m;

}

mmax=2;

while (nn > mmax) {

istep=mmax << 1;

theta=isign*(6.283185307179586f/mmax);

wtemp=sin(0.5f*theta);

wpr = -2.0f*wtemp*wtemp;

wpi=sin(theta);

wr=1.0f;

wi=0.0f;

for (m=1; m<mmax; m+=2) {

for (i=m; i<=nn; i+=istep) {

j=i+mmax;

tempr=wr*data[j-1]-wi*data[j];

tempi=wr*data[j]+wi*data[j-1];

data[j-1]=data[i-1]-tempr;

data[j]=data[i]-tempi;

data[i-1] += tempr;

data[i] += tempi;

}

wr=(wtemp=wr)*wpr-wi*wpi+wr;

wi=wi*wpr+wtemp*wpi+wi;

}

mmax=istep;

}

}

/**

* Calculates the Fourier transform of a set of n real-valued data points.

* Replaces these data (which are stored in array data[0..n-1]) by the

* positive frequency of half of their complex Fourier transform. The real-valued

* first and last components of the complex transform are returned as elements

* data[0] and data[1], respectively. n must be a power of 2. This routine

* also calculates the inverse transform of a complex data array if it is the
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* transform of real data. (Result in this case must be multiplied by 2/n.)

*

* @param data

* @param isign

*/

public static void realft(final float[] data, final int isign) {

int i, i1, i2, i3, i4, n=data.length;

float c1=0.5f, c2, h1r, h1i, h2r, h2i, wr, wi, wpr, wpi, wtemp;

float theta=PI/(n>>1);

if (isign == 1) {

c2 = -0.5f;

four1(data, n/2, 1);

} else {

c2=0.5f;

theta = -theta;

}

wtemp=sin(0.5f*theta);

wpr = -2.0f*wtemp*wtemp;

wpi=sin(theta);

wr=1.0f+wpr;

wi=wpi;

for (i=1; i< (n>>2); i++) {

i2=1+(i1=i+i);

i4=1+(i3=n-i1);

h1r=c1*(data[i1]+data[i3]);

h1i=c1*(data[i2]-data[i4]);

h2r= -c2*(data[i2]+data[i4]);

h2i=c2*(data[i1]-data[i3]);

data[i1]=h1r+wr*h2r-wi*h2i;

data[i2]=h1i+wr*h2i+wi*h2r;

data[i3]=h1r-wr*h2r+wi*h2i;

data[i4]= -h1i+wr*h2i+wi*h2r;

wr=(wtemp=wr)*wpr-wi*wpi+wr;

wi=wi*wpr+wtemp*wpi+wi;

}

if (isign == 1) {

data[0] = (h1r=data[0])+data[1];

data[1] = h1r-data[1];

} else {

data[0]=c1*((h1r=data[0])+data[1]);

data[1]=c1*(h1r-data[1]);

four1(data, n/2, -1);

}

}
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