
Understanding the Mandelbrot and Julia Set

Jake Zyons Wood

August 31, 2015

Introduction

Fractals infiltrate the disciplinary spectra of set theory, complex algebra, generative art,

computer science, chaos theory, and more. Fractals visually embody recursive structures

endowing them with the ability of nigh infinite complexity. The Sierpinski Triangle, Koch

Snowflake, and Dragon Curve comprise a few of the more widely recognized iterated function

fractals. These recursive structures possess an intuitive geometric simplicity which makes their

creation, at least at a shallow recursive depth, easy to do by hand with pencil and paper. The

Mandelbrot and Julia set, on the other hand, allow no such convenience. These fractals are part of

the class: escape-time fractals, and have only really entered mathematicians’ consciousness in the

late 1970’s[1]. The purpose of this paper is to clearly explain the logical procedures of creating

escape-time fractals. This will include reviewing the necessary math for this type of fractal, then

specifically explaining the algorithms commonly used in the Mandelbrot Set as well as its

variations. By the end, the careful reader should, without too much effort, feel totally at ease with

the underlying principles of these fractals.

What Makes The Mandelbrot Set a set?

1

Figure 1: Black and white Mandelbrot visualization

The Mandelbrot Set truly is a set in the mathematica sense of the word. A set is a collection of

anything with a specific property, the Mandelbrot Set, for instance, is a collection of complex

numbers which all share a common property (explained in Part II). All complex numbers can in

fact be labeled as either a member of the Mandelbrot set, or not. Below, painted on top of a

complex plane, we can see the Mandelbrot Set in its most basic form: the points that are members

of the set are painted black to differentiate them from their white non-member neighbors.

Part I

Complex Numbers (overview)

Complex numbers are of the form a+ bi, where a is the real component and b is the imaginary

component. By definition, the imaginary unit i satisfies the equation: i2 = −1. In practice this

convention allows simplifying complex values such as
√
−8,

2

Figure 2: complex magnitude example

√
−8 (1)

=
√
4 · −2 (2)

= 2
√
−2 (3)

= 4
√
2 ·
√
−1 (4)

= 4
√
2 · i (5)

Complex numbers can be plotted on the Complex Plane in exactly the same way one can plot

(x, y) pairs on a Cartesian Plane. The real component, a, corresponds to the x coordinate while

the imaginary component, b, corresponds to the y coordinate. See points plotted on the complex

plane below.

The numbers plotted above are (−0.5 + i), (1 + 3i), and (1.5− i). The magnitude of a complex

number is the distance from the origin to the point in question. We accomplish this with the

3

Pythagorean Theorem, a2 + b2 = c2. The magnitude of that complex number c

= |c| magnitude (6)

=
√
c∗c take root of complex conjugate (7)

=
√

(a− bi) · (a+ bi) write c in component form (8)

=
√

(a2 + b2) distribute (9)

Applying this process for the complex points plotted above the respective magnitudes are:√
(−0.5)2 + (1)2 ≈ 1.12,

√
(1)2 + 32 ≈ 3.16, and

√
(1.5)2 + (−1)2 ≈ 1.80. It is important to

note that non-zero magnitudes will always be real and positive. In complex arithmetic, the real

and imaginary components add separately: (4− 8i) + (3 + 5i) = (7− 3i). Multiplication acts

just like binomial multiplication: (2 + 4i) · (0 + i) = (2i+ 4i2). Since i2 ≡ −1, the previous

expression simplifies to (−4 + 2i).

Complex numbers in mathematics

Where do we use complex numbers in regular math? If asked to find the roots of

y = 4− (x+ 2)2, (ie solve for x when y = 0) one finds that x = 0 or −4 (see Figure 3 the red

dots represent these roots). However, if confronted with finding the roots of y = (x− 2)2 + 3, one

finds that x = 2 + 3i. The purple parabola from Figure 3 doesn’t cross the x-axis. The solution to

the roots instead gives the complex coordinates of the parabola’s minima (orange dot). Thus, one

could deduce the second equation never crosses the x-axis and has a minima or maxima at the

complex root, 2 + 3i, without plotting the function.

4

Figure 3: real and complex root example

Part II

Iteration
We know that the Mandelbrot Set is a collection of complex numbers so how does one know if

a specific number/point belongs to the set or not? The following algorithm tests some complex

point c for membership in the Mandelbrot Set.

Z0 = c initial condition (10)

Zn+1 = Z2
n + c recursive function (11)

lim
n→∞

|Zn| < 2 condition for set memberships (12)

In truth, all we need to confirm c’s membership is to show that limn→∞ |Zn| doesn’t diverge to

infinity (ie is bounded). Any point with a magnitude greater than 2 can’t be part of the set so a

common test for membership is checking a large Zn against 2 for some large n.

If

Z100

?
< 2 (13)

c is probably a member of the Mandelbrot. Zn represents a sequence that can do one of 3 things:

5

it can diverge to infinity, converge on a value, or oscillate indefinitely near the origin. If Zn

diverges, we can classify c as a non-member, if it converges we can classify it as a member, but

for c values that result in oscillating Zn values, it is impossible to verify membership. The larger

the n, the higher one’s certainty becomes that c is a member; however, it is possible for a specific

c to result in a Z1000 < 2 but Z1001 > 2.

math behind formula How does the formula Z2
n + c work? In practice one decomposes c into

its real and imaginary components, c = a+ bi, where a is the real component, re(a+ bi) = a,

and b is the imaginary component, im(a+ bi) = b. This means we can write any complex number

in the following form, z = re(z) + im(z) · i;

z2 = (a+ bi) · (a+ bi) (14)

= (a2 + abi+ bia+ (bi)2) (15)

= (a2 + 2abi+ b2i2) (16)

= (a2 − b2 + 2abi). (17)

Now it is clear that

re(z2) = (a2 − b2) and (18)

im(z2) = 2ab (19)

which we can use to show that

Zn+1 = Z2
n + c (20)

= (a2 − b2 + re(c)) + i · (2ab+ im(c)) (21)

6

This process only takes us from the nth Z to the nth+1 Z. Starting from Z0 = c, we use the

equation to find Z1, then we plug Z1 into the equation to find Z2, and so on and so forth.

example Consider point c = −1.64− 0.438 · i. Using initial conditions,

Z0 = −1.64− 0.438i (22)

Since the magnitude is less than two (ie
√
(−1.64)2 + (−0.438)2 ≈ 1.7 < 2) the sequence hasn’t

diverged yet and we need to calculate next value in the series, Z1. Using this Z0 value and

equations 21 we find

Z1 = (−1.64− 0.438 · i)2 + (−1.64− 0.438 · i) (23)

= 0.8577559999999995 + 0.99864 · i (24)

Continuing this pattern,

Z2 = −1.9015364940640007 + 1.275178903679999 · i (25)

Z3 = 0.3497598018666872− 5.2875984436160826 · i (26)

Z4 = −29.476365381929398− 4.136778767979529 · i (27)

Z5 = 850.1031775537996 + 243.4364049383447 · i (28)

|Z5| ≈ 884.3� 2, so c can’t be a member of the Mandelbrot Set. The c we just examined

spiraled away from zero after only a few Z values. Does that always happen? The Mandelbrot Set

is a case study in strange attractors and near the set’s boundary the sequence Zn behaves

erratically. Moving away from the set’s border on the outside and the sequence will diverge

without surprise. Furthermore, points far enough from the boundary on the inside will languidly

circle around the origin. But the closer to the perimeter the Zn sequence goes, the larger n is

7

needed to determine if c is a member or not. Like the Halting Problem, if the sequence neither

converges nor diverges to infinity it is impossible to conclusively resolve c’s membership status.

To get around this obstacle, mathematicians choose an arbitrary number of iterations as a

threshold number. If the sequence does not diverge after the threshold number of iterations, the

initial point is included as part of the Mandelbrot set. To get higher border detail we simply make

this number larger. A common threshold, or escape number, is 100.

8

0.1 Coloring Schemes

Figure 4: 2 by 2 grid divided into 40× 40

To visualize the Mandelbrot set one only needs two colors, such as in figure 1 where

Mandelbrot members were colored black and non-members white. It is impossible to examine

every number in the complex plane but one could imagine sampling a grid on the complex plane

from −1 to 1 vertically and horizontally. Like rows of corn, one could divide this grid into a 100

rows and columns. Now we have 100× 100 complex points (a manageable number) to deal with.

Use the iteration formula on each of these 104 points to classify members and non-members.

Furthermore, during this process one can paint each point one of two colors based on membership

(see figure 4). Increasing the number of sampled points in our grid improves the resolution. Once

the subtleties of the two color problem are understood, it is an easy leap of imagination to add

more colors. The most common technique for producing beautiful multi-colored visualizations

such as figure 5, is the escape time algorithm.

0.1.1 The Escape Time Algorithm

The Escape Time Algorithm counts how many iterations it takes before Zn > 2. For

non-members the escape number will be 0 < n < threshold limit. Members will never escape so

9

Figure 5: Smudged escape time coloring

they will not have an escape number. Now instead of having members and non-members divided

into two groups we have members in one group and non-members grouped by their escape

number. Each point can be colored in a unique way based on these values (such as exploiting

RGB values).

Python Example

from numpy import complex

#returns 0 if point is member, escape number otherwise

def test point(real,imaginary):

z = complex(0,0)

c = complex(real,imaginary)

escape number = 0

max iter = 100

while(escape number < max iter):

escape number += 1

10

if abs(z) < 2: #abs(z) is magnitude of z

z = z*z + c

else:

return escape number

return 0

Java example

private static final int MAXITER = 100;

private static final int ESCAPEBOUNDRY = 4; //22

public int testPoint(double real, double imaginary){

int escapeNumber = 0;

double zr = 0; double zi = 0;

double r, i;

while (escapeNumber < MAXITER){

escapeNumber++;

r = zr; i = zi;

if ((r*r + i*i) < ESCAPEBOUNDRY){

zr = r*r - i*i + real;

zi = 2*r*i + imaginary;

}else

return escapeNumber;//point outside set

}return 0;//point inside set

}

11

0.1.2 DEM Algorithm

The Distance Estimation Method (DEM) is a procedure that approximates the shortest distance

from a given complex point to the Mandelbrot perimeter. The escape-time algorithm’s resolution

depends proportionally upon the number of sampled points; every detail is colored independently

of its neighbors. The DEM can reveal fine structures with fewer sampled points than the escape

time algorithm because with the DEM one simply needs to probe points in the proximity of fine

structure rather than the exacts points that comprise the fine structure. The DEM is contingent

upon the Hubbard-Douady Potential, which is a function developed by Hubbard and Douady

during their study of external rays in the Mandelbrot and Julia Set.

was invented by the Mathematician of the same name.

Distance estimation = d = G′(n)
|G(n)|

The Hubbary-Douady potential:

G(c) = lim
n→∞

1

2n
· ln|zn|

First derivative of G(c) =

G′(c) = lim
n→∞

1

2n
|zn|
|z′n|

Putting in the values for distance d gives us:

d = lim
n→∞

|zn| · ln|zn|
|z′n|

Consider the Hubbard-Douady Potential a given. If you would like to know more about where it

12

comes from you can read about it online.

So now we have an equation for approximate distance from Mandelbrot perimeter–how does it

work? Well first we note that d already uses zn which we know how to calculate. Unfortunately it

also requires we know dzn (ie z′n). What is the first derivative of z? If zn+1 = z2n + c then

d(zn+1) = 2zn · dz + 1. WHY? The result makes sense because we are differentiating zn+1 with

respect to C. Thus, d(z2n) is 2zn · dz from product rule and dC with respect to C is 1. Therefore,

d(zn+1) = 2zn · dz + 1. To modify the test point functions above to calculate the

point-to-perimeter distance, we would only change a few things. In addition to updating zn we

will also be updating dzn. dz can be initialized as 0 because z0 = 0 so d(z0) = 0. If you choose to

make z0 = 0 + C then dz starts as 1. Then at the end, instead of returning the escape number, one

returns the distance estimation value described above:

d ≈ |zn| · ln|zn|
|z′n|

by inserting the calculated values for z and dz. It is also important to note that we no longer care

about escape conditions because we need to calculate large n for each point to get a more accurate

distance estimation [2]. The python example would be modified as follows:

Python DEM Example

from numpy import complex,log

def test point(real,imaginary):

z,c = complex(0,0),complex(real,imaginary)

dz,count,max iter = 0,0,100

while(count < max iter):

count += 1

dz = 2*z*dz + 1

13

z = z*z + c

return abs(z)*log(abs(z))/abs(dz)

Part III

The Julia Set

c = −0.75 + 0.11i
z = z · z + c

The Julia Set is another fractal that arises from an iterative formula that differs only slightly from

the Mandelbrot Set. In fact, to make a Julia Set Fractal we use the same formula with

zn+1 = z2n + c. The only difference is that the c we use is the same for every sampled point on the

complex plane instead the unique c at the point being sampled. That unique point is set to be z0.

Then for every successive iteration you use the predetermined c value. It is hard to imagine that

this slight variation would give such drastic results, but it does.

14

c = −0.74543 + 0.11301i

0.2 IIM

IIM stands for Inverse Iteration Method; the idea is to calculate points backwards from usual

method. For the regular Julia Set we have a specific fractal associated with C constant and the

typical equation zn+1 = z2n + c where z0 = coordinate on complex plane we are examining. Let

us rearrange the above equation to find zn with respect to zn+1. Using simple algebra we find that

zn = ±
√
zn+1 − c. The boundary of the Julia Set, instead of repelling points, now attracts them.

The neat thing is we can now pick any point anywhere on the complex plane and apply this

formula. If we plot every zn value as we apply the formula we see that z never converges to the

boundary but oscillates around the perimeter, tracing the outline of the Julia Set associated with

the c constant being used.

15

From the above images it can be seen that a lot of information is lost from the fractals seen earlier

in the Julia Set section. We have no concept of coloring, and most of the nuance at the border is

missed. A reason that a certain amount of information is lost from the boundary is that different

parts of the strange attractor perimeter ”attract” stronger than other sections. With higher

precision, stunning visuals are possible; however, optimizations in the formula are required that

we will not delve into here. The chief benefit of using IIM at all is that instead of surveying

thousands to millions of points and running 100 to a 1000 computations on each one, we need

only apply a few thousand operations on a net total of one point. The smokey outline of the Julia

Set may look meager, but it can potentially be calculated 100,000 times faster than the other

described methods.

Part IV

Fractal Variations
The iterative equation we have been using so far, z2 + c, is not in of itself special. To a certain

extent we study it purely because the equation is simple and the results profitable. With that said,

we could choose any iterative equation with any escape boundary to explore. One of these

explorations led to the haunting and beautiful ”Burning Ship ” fractal seen below. The ”Burning

Ship” fractal gets its name from its similarity to the silhouette of the prow of a ship on fire.

Buddhabrots

Another beautiful and innovative idea shows up in the so-called ”Buddhabrot.” Buddhabrots use

exactly the same scheme for producing the Mandelbrot fractal except instead of coloring each

point after a certain number of iterations every zn is plotted as a single black point from n = 0 to

n = iteration limit. The result is a beautiful ghostly outline of the Buddha.

16

Burning Ship

Figure 6: zn+1 = (|re(zn)|+ i · |im(zn)|)2 + c, z0 = 0

conclusion

The variations we can apply to the fractal generation process are limitless.

References

[1] John Horgan Who Discovered the Mandelbrot Set? Scientific America: March 13, 2009

[2] Dr. Lindsay Robert Wilson Distance estimation method for drawing Mandelbrot and Julia

sets 20/11/12

17

Figure 7: Buddhabrot

18

Figure 8: zn+1 = zπ−1n + c

19

